ENGINEERING MATHEMATICS-I

(Theory-2)

FULL MARKS: 80 TIME: 03hrs

Figures on right hand margin indicate marks.

Group-A

1. Answer the following:

2X10

- a. Express $1+\sqrt{3}i$ on polar form.
- b. Find the value of C_r/C_{r-1}
- c. Find x, y when

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

- d. Find the number of terms in the expansion of $(x-1)^n(x+1)^n$.
- e. Find the General Solution of the equation sinx +cosx =1
- f. Find the value of $\cos^2 22 \frac{1}{2}^{\circ} \sin^2 22 \frac{1}{2}^{\circ}$.
- g. Find the equation of the line passing through (1,2) and parallel with x-axis.
- h. Find the sum of the intercepts of the line 3x+4y-12=0
- i. Find the equation of the circle with centre (2,3) and touches x-axis.
- j. Find Unit vector in the direction of $\vec{a} = \hat{\imath} + 3\hat{j} + \hat{k}$

Group-B

2. Answer any six of the following:

6X5

- a. Obtain the square roots of 3+4i
- b. Find the term independent of x in the binomial expansion of $\left(x-2/x^2\right)^{15}$
- c. Resolve into Partial fraction $\frac{4x^2-x-1}{(x-1)(x^2+1)}$
- d. If $\tan \alpha = \frac{1}{2}$, $\tan \beta = \frac{1}{3}$ then find the value of $\alpha + \beta$
- e. In a triangle ABC show that $mC = 60^{\circ} if \frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$
- f. Find equation of the circle passing through origin and which cuts off intercepts a and b from co-ordinate axes.
- g. Find the angle between the vectors $\vec{a} = \hat{\imath} + \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} \hat{k} + 4\hat{\jmath}$
- h. Find the ratio of the line joining the points A(4,4) and B(7,7) divided by P(-1,1)

Group-C

Answer any three:

10x3

- 3. a. If $x + 1/x = 2\cos\theta$ and $y + 1/y = 2\cos\beta$ then find the value of $xy + \frac{1}{xy}$
 - b. Find the distance between the lines x+3y-7=0 and 2+6y-4=0

- 4. a. Prove that $2tan^{-1} \frac{1}{5} tan^{-1} \frac{1}{4} = tan^{-1} \frac{8}{53}$
 - b. Find the distance of the points (2,3) from the straight cone x-y+4=0 measured parallel to x+2y-1=0
- 5. a. Prove that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$
 - b. If A+B+C= π then show that sin2A+ sin2B-sin2C=4 cosA cosB sinC
- 6. a. Solve by Matrix Conversion Method

- b. Find the area of the parallelogram whose adjacent side are $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{b}=2\hat{\imath}+\hat{\jmath}-3\hat{k}$
- 7. a. Show that the points (9,1), (7,9), (-2,12) and (6,10) are concyclic.
 - b. Prove sine formula by Vector Method.
