# II—Sem/COMMON/2019(S)(New)

#### **ENGINEERING PHYSICS**

(Theory: 2(A))

Full Marks: 80 Time: 3 hours

## Answer any five questions including Q. Nos. 1 & 2

Figures in the right-hand margin indicate marks

## 1. Answer *all* questions :

 $2 \times 10$ 

- (a) Write down the dimensional formula of the following physical quantities:
  - (i) Power
  - (ii) Frequency
- (b) Given,  $\vec{A} = \hat{i} 2\hat{j} 3\hat{k}$ ,  $\vec{B} = 2\hat{i} + \hat{j} 5\hat{k}$ , Find  $\vec{A} \cdot \vec{B}$ .
- (c) State Triangle law of vector addition.
- (d) Define Latent Heat of Vaporization.
- (e) Draw a ray diagram for refraction through a prism.
- (f) Define Unit Pole.
- (g) State the First Law of Thermodynamics.
- (h) State Kirchhoff's 2<sup>nd</sup> Law.
- (i) Write down two important applications of LASERS in Industry.
- (j) State Fleming's Left Hand Rule.

### 2. Answer any six questions:

 $5 \times 6$ 

- (a) Two forces whose magnitudes are in the ratio 3:5 give a resultant equal to 70 N. If the angle between them is 60°, find the magnitude of each force.
- (b) A car attains a velocity of 50 m/sec in 5 minutes from standstill. Calculate the acceleration.
- (c) Distinguish between mass and weight.
- (d) State Newton's Laws of Gravitation and define G.
- (e) Write different methods to reduce Friction.
- (f) Establish the relation between  $\alpha$  and  $\beta$ .
- (g) State Coulomb's Laws in magnetism.
- (h) State Faraday's Laws of Electromagnetic Induction.
- 3. Derive expressions for time of flight, maximum height and range of a projectile fired at an angle  $\theta$  with the horizontal.

- 4. Calculate the amount of heat required to convert 5 gm of ice at -5°C to water at 60°C. Given, specific Heat of Ice = 0.5 Cal/gm °C, Latent Heat of ice = 80 Cal/gm. 10
- 5. Define Critical Angle and Total Internal Reflection with diagram. Write down the principle and application of Optical Fibre. 6 + 4
- 6. State Coulomb's Laws of Electrostatics. Find out the equivalent resistance of 5 Resistors of which 2  $\Omega$ , 3  $\Omega$  and 5  $\Omega$  connected in series and 10  $\Omega$  and 20  $\Omega$  are connected in parallel to them.
- 7. Derive an expression for force acting on a current carrying conductor placed in a uniform magnetic field. Compare between Fleming's Left Hand Rule and Right Hand Rule.

  6 + 4