I—Sem/COMMON/2019(S)(Old)(80)

ENGINEERING PHYSICS

(Code: BST-101)

Full Marks: 80 Time: 3 hours

Answer any five questions including Q. Nos. 1 and 2

Figures in the right-hand margin indicate marks

1. Answer *all* questions:

 2×10

- (a) Write down the units of the following physical quantities:
 - (i) Potential Energy
 - (ii) Frequency
 - (iii) Pressure
 - (iv) Momentum
- (b) Given, $\vec{A} = 2\hat{i} + 3\hat{j} 5\hat{k}$, $\vec{B} = \hat{i} 2\hat{j} + \hat{k}$, Find $\vec{A} \cdot \vec{B}$
- (c) What is the condition for maximum range of projectile?
- (d) What is the relation between linear velocity and angular velocity?
- (e) Write down the application of Optical Fibre.
- (f) Define Unit Charge.
- (g) State the First Law of Thermodynamics.
- (h) State Ohm's law.
- (i) Write down properties of LASER.
- (j) Calculate the magnetic flux density at the centre of a circular coil of radius 5 m, when a current of 2 A flows through it.

2. Answer any *six* questions :

 5×6

- (a) A car starting from rest attains a velocity of 60 m/sec in 2 minutes. Calculate the acceleration.
- (b) Derive expression for velocity and acceleration of a particle executing SHM.
- (c) Distinguish between progressive wave and stationery wave.
- (d) Calculate the equivalent capacitance between 3 capacitors of capacity 5 μ F, 10 μ F and 0·2 mF connected in parallel.
- (e) State and explain Fleming's Left Hand Rule.
- (f) Establish the relation, $\beta = 2\alpha$.
- (g) State Coulomb's laws in Magnetism.
- (h) State the laws of Photoelectric Emission.

3.	State Newton's laws of Gravitation. Define Gravitational Constant G and establish relation between g and G .	h a 6 + 4
4.	State the laws of Limiting Friction and mention some methods to reduce friction.	6+4
5.	Define Critical Angle and Total Internal Reflection with diagram. Establish trelation between refractive index and critical angle.	he 6 + 4
6.	State Kirchhoff's laws and obtain balanced condition of Wheatstone's Bridge.	6 + 4
7.	State and explain Faraday's laws of Electromagnetic Induction.	10