IIND SEM./COMMON/2022(S)

BST201 ENGINEERING MATHEMATICS-II

Full Marks: 80 Time- 3 Hrs

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks

1. Answer **All** questions

2 x 10

- a. Evaluate $\lim_{x\to\infty} \frac{3x^2+2}{x^3+5}$
- b. Find the derivative of $\log x$ with respect to x^2
- c. Evaluate $\int_0^1 \frac{dx}{1+x^2}$
- d. If $y = e^{\cos x^2}$, then find y_1
- e. Find order and degree of the differential equation

$$2\frac{d^2y}{dx^2} = \left\{5 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{5}}$$

- f. Integrate $\int log x dx$
- g. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z = log(x^2 y^2)$
- h. Find Image of the point (2, -3, 1) with respect to XY- plane
- i. Find centre and Radius of the Sphere $x^2 + y^2 + z^2 2x 2y 2z 1 = 0$
- j. Integrate $\int e^x \{\cot x + \log \sin x\} dx$

2. Answer **Any Six** Questions

6 x 5

- a. Find angle between the planes x + 2y + 2z 7 = 0 and 2x y + z 6 = 0
- b. Evaluate $\lim_{x\to 0} \frac{\log(x+1)}{\sqrt{x+1}-1}$
- c. Solve $\frac{dy}{dz} = (y^2 + 1)(z^2 + 1)$
- d. Find the value of $\int_0^{\frac{\pi}{2}} \frac{dx}{1+cotx}$
- e. Find $\frac{dy}{dx}$, if $y = x^{\sin x}$
- f. Integrate $\int x \sin^{-1} x \, dx$

- g Find $\frac{dy}{dx}$, if $x = t + \sin t$, $y = 1 + \cos t$ at $t = \frac{\pi}{4}$
- Determine extremum value and extremum points of the function 10

$$y = 2x^3 - 15x^2 - 36x + 18$$

- 4 Integrate $\int e^{2x} \cos 3x \, dx$ 10
- 5 a) Solve $\frac{dy}{dx} + y \sec x = \tan x$
 - b) Find $\frac{dy}{dx}$, $if x^2y + xy^2 + 1 = 0$
- 6 a) Test the Continuity of the function $f(x) = \begin{cases} 3x 2 & when x \le 0 \\ x + 1 & when x > 0 & at x = 0 \end{cases}$
 - b) If $y = e^{\tan^{-1} x}$, Then prove that $(1 + x^2)y_2 + (2x 1)y_1 = 0$
- 7 a) Find co ordinate of foot of perpendicular drawn from (1,2,3) on line 5 joining the points (-2,3,4) and (2,-1,6)
 - b) Prove that $\int \frac{dx}{\sqrt{a^2 x^2}} = \sin^{-1} \left(\frac{x}{a}\right) + k$, where K= integrating constants