1st Sem./CIVIL/ELECT/ETE/MECH/AUTO/AE &IE/CSE/CHEM/METAL/MINING/DRILLING/ARCH/CERAMIC/IT/ **ELECT[PT]/EEE/ 2021(W)**

ENGINEERING MATHEMATICS - I BST-103

Full Marks: 80

Time- 3 Hrs Answer any five Questions including Q No.1& 2

Figures in the right hand margin indicates marks

- 1. Answer All questions
 - Find $(-i)^{4n+2}$ a.
 - b. Find the number of terms in the expansion of $(1 + 2x + x^2)^7$.
 - With 4 different elements, how many determinants of order 2 are c. possible?

d. If
$$A = \begin{pmatrix} 2 & 4 \\ 3 & 13 \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then find $A - \alpha I$

e. Find the value of
$$cos^2 22\frac{1}{2} - sin^2 22\frac{1}{2}$$

- f. Find the area of the triangle with vertices (0, 0), (1, 0), (2, 3).
- Find the centre and radius of the circle $x^2 + y^2 2x + 4y 4 = 0$. g.
- If the vector $\vec{a} = \alpha \hat{\imath} + 3\hat{\jmath} 6\hat{k}$ and $\vec{b} = \hat{\imath} \hat{\jmath} + 2\hat{k}$ are parallel, find h. α.

i. Find
$$\frac{\tan 15^\circ}{1-\tan^2 15^\circ}$$

Determine the distance between the parallel lines x+5=0 and x-5=0. 1.

2. Answer Any Six Questions

- Prove that $(2 + 5\omega + 2\omega^2)^6 = 729$ a.
- Find the adjoint of the following matrix b.

[-2	2	3]
1	4	2
-2	-3	1

- Find the maximum and minimum values of the following c. 8 cos x – 15 sin x - 2
- d. Find the term independent of x in the expansion of $\left(x^2 + \frac{1}{x}\right)^9$
- Find the equation of circle whose end points of diameter are (-5,3) e and (7,5).

Show that $\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = (x+y+z)(x-z)^2$ f.

Find the area of the parallelogram whose adjacent sides are g determined by the vectors $\vec{a} = \hat{i} + 2\hat{j} + 63$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$. 2 x 10

5X6

Answer any three questions

3 a. If
$$x + \frac{1}{x} = 2\cos\theta$$
, then show that $x^n + \frac{1}{x^n} = 2\cos n \theta$

 b.
 If A+B=45° Prove that
 3

 (1+tanA)(1+tanB) =2.
 3

7

10

- 4 Resolve into partial fractions $\frac{(2x+1)}{(x+1)(x-2)(x-3)}$
- 5 Solve by using Cramer's rule 10 3x+2y+6z = 1 2x-3y+4z = 34x-3y+7z = 4
- 6 Find the vector and scalar projection of $\vec{a} = \hat{i} \hat{j} \hat{k}$ 10 and $\vec{b} = 3\hat{i} - \hat{j} - 3\hat{k}$.
- 7 a. If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \frac{\pi}{2}$ 5 Show that xy+yz+zx=1 5

b. If
$$\frac{a}{secA} = \frac{b}{secB}$$
 and $a \neq b$, then find C 5