1ST SEM. /COMMON TO / 2020(W) OLD BST-103 ENGINEERING MATHEMATICS -I

Full Marks: 80

Answer any five Questions including Q No.1& 2 Figures in the right hand margin indicates marks Time- 3 Hrs

2 x 10

- 1. Answer **All** questions
 - a. Express $\frac{1+2i}{3-i}$ in the form of a+ib
 - b. Find the number of terms in the expansion of $(1 + x + x^2)^7$.
 - c. Find the value of cos15°
 - d. Find the scalar projection of $\vec{a} = (i-2j+\hat{k})$ on $\vec{b} = (4\hat{i}-4\hat{j}+7\hat{k})$
 - e. Write the condition of matrix multiplication. If $\begin{bmatrix} 3 & 4 & 2 \end{bmatrix}$ B = $\begin{bmatrix} 2 & 1 & 0 & 3 & 6 \end{bmatrix}$. Find the order of matrix B.
 - f. Find the value of "a", if the points (1,4), (2,7), and (3,a) are collinear.
 - g. Reduce 3x+5y+4=0 to the intercept form and find y-intercept.
 - h. Find the equation of a circle with centre (-3, 2) and radius 7.
 - i. Express $\frac{1}{x^2-a^2}$ into partial fraction.
 - j. If $a\cos B = b\cos A$, then find $\cos B$.
- 2. Answer any **Six** questions
 - a. If $A = \begin{pmatrix} 5 & 3 \\ 12 & 7 \end{pmatrix}$, Then verify that $A^2 12A I_2 = 0$, where I_2 is an identity matrix of order 2.
 - b. Split $\frac{x}{(x+1)(x+2)}$ into partial fractions
 - c. If (A+B) = 45°, find the value of (1+tanA)(1+tanB)
 - d. Find the equation of a circle passing through the point (2,4) and the centre is the point of intersection of the lines x-y=4 and 2x+3y= -7.
 - e. Find the square root of 8-5i
 - f. Prove that the vectors $2\hat{i}-\hat{j}+\hat{k}$, $\hat{i}-3\hat{j}-5\hat{k}$ and $3\hat{i}-4\hat{j}-4\hat{k}$ form a right angled triangle.
 - ^g Find the term independent of x in the expansion of $\left(\frac{3}{2}x^3 \frac{1}{2x}\right)^9$
 - h In a \triangle ABC, prove that a sin(B-C) + b sin (C-A) + c sin(A-B) = 0
- 3 i Solve by using Cramer's rule
 - 5x-7y+z=11 6x-8y-z=15

6 x 5

7

		3x+2y-6z=7	
	ii		3
		Prove that $\begin{vmatrix} 1 & x & 1 \end{vmatrix} = (x+2)(x-1)^2$	
4	i	II I XI Solve by matrix method	7
		5x+3y+z=16	
		2x+y+3z=19	
		X+2y+4z=25	
	ii	Find adjoint of the matrix A= $\begin{pmatrix} 3 & 1 \\ -7 & 5 \end{pmatrix}$	3
5	i	If A+B+C= π then prove that	7
		sin 2A + sin 2B - sin 2C = 4cos A cos B cos C	
	ii	In any triangle prove that if	3
		(a+b+c) (b+c-a) =3bc Then <i>angle of A</i> =60°	
6	i	Find the equation of the straight line which passes through the point of	7
		intersection of the lines x-y-1=0 and 2x-3y+1=0 and is parallel to the line	
		3x+4y=14.	
	ii	Find the acute angle between the lines x-2y+3=0 and 3x+y-1=0	3
7	i	Define unit vector? Find the unit vector perpendicular to the vectors $\hat{i}-3\hat{j}+\hat{k}$ and $-\hat{i}+2\hat{j}-\hat{k}$	7
	ii	Prove that	3
		$(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5 = 32$	