I—Sem/COMMON/2019(S)(Old)(80)

ENGINEERING MATHEMATICS-I

(Code: BST-103)

Full Marks: 80 Time: 3 hours

Answer any five questions including Q. Nos. 1 & 2

Figures in the right-hand margin indicate marks

1. Answer *all* questions:

 2×10

- (a) Find the value of $(-i)^{4m+5}$.
- (b) Evaluate $\begin{vmatrix} w^6 & w^4 \\ -w^6 & w^5 \end{vmatrix}$ where $w^3 = 1$.
- (c) Find the value of $\cos \left(\sin^{-1}\frac{1}{4} + \cos^{-1}\frac{1}{4}\right)$.
- (d) If $\sin \alpha = \frac{1}{2}$ and $\sin \beta = \frac{1}{3}$, find the value of $\sin (\alpha + \beta)$.
- (e) Find the equation of the line whose x-intercept is 3 and y-intercept is 4.
- (f) Determine the centre and radius of the circle $x^2 + y^2 6x + 4y 36 = 0$.
- (g) Find the adjoint of the matrix:

$$\begin{bmatrix} i & -i \\ i & i \end{bmatrix}.$$

- (h) Find the value of 'p' so that the vectors $2\hat{i} + \hat{j} \hat{k}$ is perpendicular to the vector $\hat{i} \hat{j} + p\hat{k}$.
- (i) Find the number of terms in the expansion of $\left(x^2 2 + \frac{1}{x^2}\right)^{1}$.
- (j) If $\sin A = \sin B$ and $b = \frac{1}{2}$, then find the value of 'a'.

2. Answer any six questions:

 5×6

- (a) Find the square root of $-5+12\sqrt{-1}$.
- (b) Find the adjoint of the matrix:

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 2 \\ 1 & 3 & -2 \end{bmatrix}.$$

(c) If $A + B + C = \pi$, prove that

$$\sin 2A + \sin 2B + \sin 2C = 4\sin A \cdot \sin B \cdot \sin C$$

(d) Prove that $\tan 37 \frac{1}{2}^{\circ} = \sqrt{6} + \sqrt{3} - \sqrt{2} - 2$.

- (e) Obtain the equation of a circle passing through the points (0, 0), (6, 0) and (0, 8).
- (f) Obtain the equation of the line passing through the point (-2, 3) and perpendicular to the line 3x + 4y 11 = 0.
- (g) Determine the area of a parallelogram whose diagonals are determined by the vectors $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} 3\hat{j} + 4\hat{k}$.
- (h) In any triangle, prove that

$$b\cos B + c\cos C = a\cos(B - C).$$

- 3. Prove that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$ 10
- **4.** Solve the following equation by matrix method:

$$x + y + z = 4$$
$$2x - y + 3z = 1$$
$$3x + 2y - z = 1$$

5. Resolve into partial fractions :

$$\frac{x}{(x-1)(x^2+1)}.$$

- 6. Find the equation of the line passing through the intersection of 2x y 1 = 0 and 3x 4y + 6 = 0 and parallel to the line x + y 2 = 0.
- 7. If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi$, show that

$$x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz.$$

10